Réduction

Exercices corrigés sur le thème « réduction des matrices et des endomorphismes » pour Spé Mp, Pc, Psi (posés à Polytechnique, Ens, Mines, Centrale, Ccp, etc.)

Diagonalisation d’une matrice en Z

(Oral Centrale)
Soit {Z_n\in\mathcal{M}_{n}(\mathbb{R})}, définie par :{\begin{cases}z_{ij}=1\text{\ si\ }(i\!=\!1\;\text{ou}\;i\!=\!n\;\text{ou}\;i\!+\!j=n\!+\!1)\\0\text{\ sinon}\end{cases}}Prouver que {Z_n} est diagonalisable dans {\mathcal{M}_{n}(\mathbb{R})}
Procéder à la diagonalisation efffective de {Z_n}.
Donner l’exemple de {n=5} et {n=6}.

Sous-espaces stables, commutant

(Oral Mines-Ponts)
Soit {A=\begin{pmatrix}{1} & {j} & {j^{2}} \\ {j} & {j^{2}} & {1} \\ {j^{2}} & {1} & {j}\end{pmatrix}}, où {j=\text{e}^{2i\pi/3}}.
La matrice {A} est-il diagonalisable ?
Déterminer les sous-espaces stables par {A}.
Déterminer la dimension de :{\mathcal{C}_A=\{M\in\mathcal{M}_3(\mathbb{C}),\;AM=MA\}}

B polynôme en A ⇒ A polynôme en B ?

(Oral Mines-Ponts)
Soient {A\in \mathcal{M}_{n}(\mathbb{K})} une matrice diagonalisable.
Soit {B=A^{3}+A+I_{n}}.
Si {\mathbb{K}=\mathbb{R}}, montrer que {A} est un polynôme en {B}.
Qu’en est-il si {\mathbb{K}=\mathbb{C}}?
Qu’en est-il si {\mathbb{K}=\mathbb{R}}, mais que {A} n’est pas supposée diagonalisable dans {\mathcal{M}_{n}(\mathbb{R})}?

Un critère de non diagonalisabilité

(Oral Mines-Ponts)
Soient {E} un {\mathbb{C}}-espace vectoriel de dimension finie et {u\in\mathcal{L}(E)}. On montre que {u} est non diagonalisable si et et seulement s’il vérifie la propriété : il existe un plan {P} de {E} stable par {u} et une base de {P} dans laquelle la matrice de l’endomorphisme induit par {u} s’écrit {\begin{pmatrix}\lambda & 1 \\ 0 & \lambda \end{pmatrix}}.

Racine n-ième d’une rotation

(Oral Mines-Ponts)
Sent {M\in \mathcal{M}_{2}(\mathbb{R}),\;n\in \mathbb{N}} avec {M^{n}=\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix}}.
Soit {\theta_{k}=\frac{(2k+1)\pi}{2n}} et {R_{k}=\begin{pmatrix}\cos\theta_{k} & -\sin\theta_{k} \\\sin\theta _{k} & \cos\theta _{k}\end{pmatrix}}.
Montrer : {\exists\,Q\in \mathrm{GL}_{2}(\mathbb{R}),\exists\,k\in \mathbb{N},\;Q^{-1}MQ=R_{k}}.