Réduction de matrices par blocs

On trouvera ici les exercices corrigés de mathprepa.fr (chapitre « Réduction des endomorphismes ») dans la catégorie « Réduction de matrices par blocs ».

Diagonalisation d’une matrice en Z

(Oral Centrale)
Soit {Z_n\in\mathcal{M}_{n}(\mathbb{R})}, définie par :{\begin{cases}z_{ij}=1\text{\ si\ }(i\!=\!1\;\text{ou}\;i\!=\!n\;\text{ou}\;i\!+\!j=n\!+\!1)\\0\text{\ sinon}\end{cases}}Prouver que {Z_n} est diagonalisable dans {\mathcal{M}_{n}(\mathbb{R})}
Procéder à la diagonalisation efffective de {Z_n}.
Donner l’exemple de {n=5} et {n=6}.

Matrices semblables, par blocs

(Oral Mines-Ponts)
Soient {A,B} diagonalisables dans {\mathcal{M}_{n}(\mathbb{C})}.
On suppose {\mathrm{S}\mathrm{p}(A)\cap \mathrm{S}\mathrm{p}(B)=\emptyset }.
Soit {N=\begin{pmatrix}A & C \\0 & B\end{pmatrix}} et {M=\begin{pmatrix}A & 0 \\0 & B\end{pmatrix}}
Montrer que {M\;\text{et}\;N} sont semblables.
Sont-elles diagonalisables?

Produit de Kronecker

(Oral Centrale 2018)
Dans {\mathcal{M}_{2}(\mathbb{R})} on pose :{F(A,B)=\begin{pmatrix}aB & bB \\ cB & dB\end{pmatrix}\text{\ quand\ }A=\begin{pmatrix}a & b \\ c & d\end{pmatrix}}Montrer que {F(A,B)F(A',B')=F(AA',BB')}.
Donner le rang, la trace, le déterminant de {F(A,B)}.
A-t-on {A,B} diagonalisables {\Rightarrow F(A,B)} diagonalisable? Réciproque?

Réduction d’endo. nilpotent

(Oral Centrale 2018)
Soit {v\in\mathcal{L}(E)}, avec {\dim(E)=3n}.
On suppose {v^{3}=0}, {v^{2}\neq 0} et {\mathrm{rg} (v)=2n}.
Montrer que {\text{Ker}(v)\subset \text{Im}(v^2)}.
Former une base où {v} a pour matrice {\begin{pmatrix}0_{n} & 0_{n} & 0_{n} \\ I_{n} & 0_{n} & 0_{n} \\ 0_{n} & I_{n} & 0_{n}\end{pmatrix}}

Diagonalisation de M->AM+MB

(Oral X-Cachan Psi)
Soient {A,B\in\mathcal{M}_{n}(\mathbb{R})}, diagonalisables dans \mathcal{M}_{n}(\mathbb{R}).
Soit \varphi_{A,B} l’endomorphisme de \mathcal{M}_{n}(\mathbb{R}) défini \varphi_{A,B}(M)=AM+MB.
Dans cet exercice, on montre (de deux manières différentes) que l’endomorphisme \varphi_{A,B} est diagonalisable et on en donne une base de diagonalisation.