Calcul asymptotique

Exercices corrigés de mathématiques en Mpsi Pcsi, sur le thème « Calcul asymptotique », posés aux concours.

Deux suites récurrentes

(Oral Mines-Ponts)
Soit {\left(r_{n}\right)_{n\ge0}} une suite de {\mathbb{R}^{+*}} de limite {r>0}.
On pose {\begin{cases}a_{0}=1\\b_{0}=1\end{cases}} et {\begin{cases}(1) :a_{n+1}=a_{n}\!+\!b_{n}/2\\(2) :b_{n+1}=r_{n}\left(4a_{n}\!+\!b_{n}\right)\end{cases}}
Justifier que {\lim\limits_{+\infty}a_{n}=\lim\limits_{+\infty}b_{n}=+\infty }.
On suppose que {n\mapsto q_{n}=\dfrac{a_{n+1}}{a_{n}}} est monotone.
Donner sa limite, et {k>0} tel que {b_{n}\stackrel{+\infty}{\sim}ka_{n}}.

Récurrences croisées

(Oral Mines-Ponts)
Soient {\alpha ,\beta} dans {\mathbb{R}^{+*}}. On pose {a_{1}=b_{1}=1} puis :{\begin{array}{l}(1) : a_{n+1}=a_{n}+\beta b_{n}\\[6pt](2) : b_{n+1}=\dfrac{n}{n+1}\left(\alpha a_{n}+b_{n}\right)\end{array}}Justifier que {\lim\limits_{+\infty}a_{n}=\lim\limits_{+\infty}b_{n}=+\infty }.
On suppose que {n\mapsto a_{n+1}/a_{n}} est monotone.
Montrer qu’elle converge et que {b_{n}\stackrel{_{+\infty}}{\sim}\sqrt{\dfrac{\alpha}{\beta}}a_{n}}

Un développement asymptotique

(oral Mines-Ponts)
On considère l’équation (E_n):\text{e}^x=x^n, avec n\in\mathbb{N}.
1. Montrer que pour n assez grand (E_n) a dans {\mathbb{R}^{+*}} deux solutions {u_{n}\lt v_{n}}.
2. Montrer que la suite {(u_{n})} converge vers une limite {\ell} que l’on précisera. Donner un équivalent de {u_{n}-\ell} quand {n} tend vers {+\infty}.
3. Calculer {\displaystyle\lim_{n\rightarrow+\infty}v_{n}} puis donner un équivalent de {v_{n}} quand {n} tend vers {+\infty}.
4. Donner un développement asymptotique à deux termes de {v_{n}}.