Intégration

Exercices corrigés sur le thème « intégration » pour les classes de Sup Mpsi Pcsi, et Spé Mp, Pc, Psi (concours Polytechnique, Ens, Mines, Centrale, Ccp, etc.)

Primitives et limites comparées

(Mines-Ponts)
Soit {f\in \mathcal{C}^{0}(\mathbb{R}^{+},\mathbb{R})} . Pour {x\in \mathbb{R}^{+}}, on pose : {F(x)=\!\displaystyle\int_{0}^{x}\!\!f(t)\text{d}t\;\text{et}\;g(x)\!=\!f(x)\!+\!F(x)}On suppose que {f} a une limite finie en {+\infty }.
En est-il de même de {F}?
On suppose que {F} a une limite finie en {+\infty }.
En est-il de même de {f}?
On suppose que {g} a une limite finie en {+\infty }.
Déterminer la limite de {f} en {+\infty }.

Intégrale d’une fonction discrète

(Oral Mines-Ponts)
Soit {(a_{n})} une suite strictement décroissante de limite {0}.
Pour {x>0}, soit {N(x)=\mathrm{C}\mathrm{a}\mathrm{r}\mathrm{d}\{n\in \mathbb{N};\;a_{n}\geq x\}}.
Montrer que {N} est intégrable sur {]0,+\infty \lbrack } si
et seulement si la série {\displaystyle\sum a_{n}} converge.
Montrer qu’alors {\displaystyle\int_{0}^{+\infty}\!\!\!N(x)\,\text{d}x=\displaystyle\sum\limits_{n=0}^{+\infty }a_{n}.}

Une suite implicite paramétrée

(Oral Centrale 2018)
Soit {f_{n}(t)=\dfrac{e^{t}}{1+t^{n}}\;\text{et}\;\Phi _{n}(x)=\displaystyle\int_{0}^{x}f_{n}(t)\text{d}t}
Étudier la convergence de {(f_{n})}. Montrer :
{\forall\,\alpha >0,\;\exists\,!\;x_{n}(\alpha )\in\mathbb{R}^{+},\;\Phi _{n}(x_{n}(\alpha ))=\alpha}Étudier {\displaystyle\lim_{n\to+\infty}x_{n}(\alpha)}.

Deux suites d’intégrales

(Oral Centrale 2018)
On pose {I_{n}=\displaystyle\int_{0}^{+\infty}\cos\Bigl(\dfrac{t}{n}\Bigr)\dfrac{\,\text{d}t}{{t}^{n}+t^{2}+1}}.
De même, soit {J_{n}=\displaystyle\int_{0}^{+\infty}\sin\Bigl(\dfrac{t}{n}\Bigr)\dfrac{n\,\text{d}t}{t^{n}+t^{2}+1}}.
Déterminer les limites de {(I_{n})} et {(J_{n})}.