Calcul matriciel

Exercices corrigés de mathématiques en Mpsi Pcsi, pour le chapitre « Calcul matriciel »

Matrices bistochastiques, épisode 9

Soit {B_{n}\in\mathcal{M}_n(\mathbb{R})} la matrice de terme général {(b_{i,j})_{1\le i,j\le n}} définie par:
{\begin{cases}b_{i,i+1}=b_{i+1,i}=\dfrac{1}{2}\text{\ si }1\le i\lt n\\b_{1,1}=b_{n,n}=\dfrac{1}{2},\text{\ et\ }b_{i,j}=0\text{\ dans les autres cas}\end{cases}}On diagonalise B_n, on étudie la limite de ses puissances, et on illustre les résultats avec l’aide du langage Python.

Matrices bistochastiques, épisode 6

Pour les notations et les résultats précédents : Ep1, Ep2, Ep3, Ep4, Ep5.
Soit {A} une matrice positive magique de somme {\mu>0}.
On sait que {A=\displaystyle\sum_{k=1}^{m}\alpha_{k}P_{k}}, (avec {\alpha_k>0}, {\displaystyle\sum_{k=1}^{m}\alpha_k=\mu}, les {P_k} matrices de permutations).
On montre ici que {m} peut être rendu inférieur ou égal à {(n\!-\!1)^2\!+\!1}.

Matrices bistochastiques, épisode 4

On reprend les définitions et les notations de l’épisode 1.
Pour {A\in\mathcal{M}_{n}(\mathbb{R})}, et pour {\sigma\in\mathcal{S}_{n}}, on note {\sigma(A)=\displaystyle\prod_{j=1}^{n}a_{\sigma(j),j}}.
On dit que {A} est traversable s’il existe {\sigma\in\mathcal{S}_{n}} telle que {\sigma(A)\ne0}.
On montre ici que toute matrice magique de somme {\mu>0} (et en particulier toute matrice bistochastique) est traversable