Matrices bistochastiques, épisode 3

On reprend les définitions et les notations de l’épisode 1.
On prouve ici la réciproque du résultat final de l’épisode 2: on va donc montrer que tout élément extrémal de {\mathcal{B}_{n}(\mathbb{R})} est une matrice de permutation P_{\sigma}.
Pour cela, soit {C=(c_{i,j})} bistochastique sans être une matrice de permutation.
On doit montrer qu’il existe {A,B} bistochastiques distinctes telles que {C\in\,]A\,;B[}.

  1. Montrer qu’il existe deux suites (i_{k})_{k\ge0} et (j_{k})_{k\ge0} de {[[0,n\!-\!1]]} telles que :{\forall\, k\in\mathbb{N},\begin{cases}i_{k}\ne j_{k+1}\\j_{k}\ne j_{k+1}\end{cases}\begin{cases}0\lt c_{i_{k},j_{k}}\lt 1\\0\lt c_{i_{k},j_{k+1}}\lt 1\\0\lt c_{i_{k+1},j_{k+1}}\lt 1\end{cases}}Indication: choisir {(i_{0},j_{0})}, puis {j_{1}} puis {i_{1}} et repartir de {(i_{1},j_{1})}.
  2. La suite {(j_{k})_{k\ge0}} n’étant pas injective, certaines valeurs de {j_{k}} se répètent.
    Quitte à renuméroter, on peut dire qu’il existe {m\ge1} tel que {j_{m+1}=j_{0}}.
    On définit alors la matrice {D=(d_{i,j})} par : {\forall\, k\in[[ 0,m]],\;\begin{cases}d_{i_{k},j_{k}}=1\\d_{i_{k},j_{k+1}}=-1,\\d_{i,j}=0\text{ sinon}\end{cases}}Montrer que pour {\lambda>0} assez petit, {\begin{cases}A=C-\lambda D\\B=C+\lambda D\end{cases}} sont bistochastiques.
    Conclure.

Cliquer ici pour voir (ou cacher) le corrigé
Pour voir ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr, c'est plus de 2500 exercices et 200 problèmes (tous soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. dans une présentation fluide et professionnelle adaptée à toutes les tailles d'écrans, pour une souscription de 20€ (un an) ou 30€ (deux ans).