Calcul matriciel

Exercices corrigés de calcul matriciel pour Mpsi Pcsi, et pour Spé Mp, Pc, Psi (posés aux concours Polytechnique, Ens, Mines, Centrale, Ccp, etc.)

Diagonalisation de M->AM+MB

(Oral X-Cachan Psi)
Soient {A,B\in\mathcal{M}_{n}(\mathbb{R})}, diagonalisables dans \mathcal{M}_{n}(\mathbb{R}).
Soit \varphi_{A,B} l’endomorphisme de \mathcal{M}_{n}(\mathbb{R}) défini \varphi_{A,B}(M)=AM+MB.
Dans cet exercice, on montre (de deux manières différentes) que l’endomorphisme \varphi_{A,B} est diagonalisable et on en donne une base de diagonalisation.

Matrices bistochastiques, épisode 6

Pour les notations et les résultats précédents : Ep1, Ep2, Ep3, Ep4, Ep5.
Soit {A} une matrice positive magique de somme {\mu>0}.
On sait que {A=\displaystyle\sum_{k=1}^{m}\alpha_{k}P_{k}}, (avec {\alpha_k>0}, {\displaystyle\sum_{k=1}^{m}\alpha_k=\mu}, les {P_k} matrices de permutations).
On montre ici que {m} peut être rendu inférieur ou égal à {(n\!-\!1)^2\!+\!1}.

Matrices bistochastiques, épisode 4

On reprend les définitions et les notations de l’épisode 1.
Pour {A\in\mathcal{M}_{n}(\mathbb{R})}, et pour {\sigma\in\mathcal{S}_{n}}, on note {\sigma(A)=\displaystyle\prod_{j=1}^{n}a_{\sigma(j),j}}.
On dit que {A} est traversable s’il existe {\sigma\in\mathcal{S}_{n}} telle que {\sigma(A)\ne0}.
On montre ici que toute matrice magique de somme {\mu>0} (et en particulier toute matrice bistochastique) est traversable