Une suite/série implicite
(Oral Centrale)
Montrer que : {\forall\,n\in \mathbb{N},\;\exists!\,a_{n}\in\mathbb{R},\;e^{a_{n}}+na_{n}=2}
Déterminer la nature des séries {\displaystyle\sum a_{n}} et {\displaystyle\sum(-1)^{n}a_{n}}.
Déterminer la limite de {n(1-na_{n})} en {+\infty}.
Développer {a_n} à la précision {o\left(\dfrac{1}{n^3}\right)}.
Montrer que : {\forall\,n\in \mathbb{N},\;\exists!\,a_{n}\in\mathbb{R},\;e^{a_{n}}+na_{n}=2}
Déterminer la nature des séries {\displaystyle\sum a_{n}} et {\displaystyle\sum(-1)^{n}a_{n}}.
Déterminer la limite de {n(1-na_{n})} en {+\infty}.
Développer {a_n} à la précision {o\left(\dfrac{1}{n^3}\right)}.