(Oral Centrale) Soit {J\!=\!\displaystyle\int_{0}^{1}\!\!f} où {f(x)=\dfrac{\ln(x)\ln^2(1\!-\!x)}{x}} On rappelle {\displaystyle\sum_{n=1}^{+\infty}\dfrac{1}{n^2}=\dfrac{\pi^2}{6}} et {\displaystyle\sum_{n=1}^{+\infty}\dfrac{1}{n^4}=\dfrac{\pi^4}{90}}. On note {u_{n}=\displaystyle\sum_{k=1}^{n}\dfrac1{k^2}}.
|