Espaces vectoriels normés

Exercices corrigés sur le thème « espaces vectoriels normés » pour Sup Mpsi Pcsi, et Spé Mp, Pc, Psi (posés aux concours Polytechnique, Ens, Mines-Ponts, Centrale, Ccp)

Inégalités entre distances

Soit {x,y,z,t} quatre vecteurs d’un espace vectoriel normé E. Montrer que :
{\begin{array}{rl}\left\|{x\!-\!t}\right\|+\left\|{y\!-\!z}\right\|&\le\left\|{x\!-\!y}\right\|+\left\|{y\!-\!t}\right\|\\[6pts]&\quad+\left\|{t\!-\!z}\right\|+\left\|{z\!-\!x}\right\|\end{array}}

Question de point fixe

(Oral Centrale)
Soit {E} un espace vectoriel normé de dim finie.
Soit {K\subset E} un fermé borné non vide.
Soit {f:K\rightarrow K} telle que : {x\ne y\Rightarrow\|f(x)-f(y)\|\lt \|x-y\|}1. Montrer : {\exists\,!\,c\in K,\;f(c)=c}.
2. Soit {x_0\in K} et : {\forall\, n\in\mathbb{N},\;x_{n+1}=f(x_n)}.
\quadMontrer que {(x_n)_{n\ge0}} converge vers {c}.