On trouvera ici les exercices corrigés de mathprepa.fr issus du chapitre « Espaces préhilbertiens réels », dans la catégorie « Exemples de produits scalaires ».
(Oral Centrale). Avec une méthode basée sur des dérivées partielles de fonctions génératrices, on étudie un produit scalaire discret sur {\mathbb{R}_n[X]}.
(Oral Mines-Ponts)
Soit {E} un espace préhilbertien réel.
Soit {f\colon E\to E} vérifiant {f(0)=0} et :{\forall\,(x,y)\in E^{2},\;\|f(x)-f(y)\|=\|x-y\|}Montrer que {(f(x)\mid f(y))=( x\mid y)}
Montrer que {f} est linéaire.
(Oral Centrale)
On étudie une famille de polynômes orthogonaux pour {(f\mid g)=\displaystyle\int_{-\infty}^{+\infty}f(t)g(t)\varphi(t)\,\text{d}t}On montre qu’ils sont scindés simples sur {\mathbb{R}}.
(Oral Centrale)
On se donne {(e_{1},\ldots,e_{p})} dans {\mathbb{R}^{n}} euclidien, tels que {(e_{i}\mid e_{j})\lt 0} pour {i\neq j}.
Montrer que {(e_{1},\ldots,e_{p-1})} est libre. Conséquence?
(Oral Centrale Mp)
Étude de {\left(f\mid g\right)=\dfrac{2}{n}\displaystyle\sum\limits_{k=0}^{n-1}f(c_{k})g(c_{k})}, où {c_k=\cos\Bigl(\dfrac{(2k+1)\pi}{2n}\Bigr)}
On munit {E=\mathbb{R}[X]} du produit scalaire {\left({P}\mid{Q}\right)=\displaystyle\int_{0}^{1}P(t)Q(t)\,\text{d}t}.
Existe-t-il {A\in E} tel que : {\forall\, P\in E,\;P(0)=\,\left({A}\mid{P}\right)}?
Même question avec E=\mathbb{R}_n[X]. Que dire sur A?
Soit {a} unitaire dans {E} préhilbertien réel.
Soit \varphi_a\colon E^2\to\mathbb{R} définie par : {\varphi(x,y)=\left({x}\mid{y}\right)+\lambda\left({x}\mid{a}\right)\left({y}\mid{a}\right)}
Pour quels {\lambda\in\mathbb{R}} l’application \varphi_a est-elle un produit scalaire?
On munit {E=\mathscr{C}([-1,1],\mathbb{R})} du produit scalaire {\left(f\mid g\right)=\displaystyle\int_{-1}^{1}f(t)g(t)\text{d}t}Soit {\begin{cases}F=\{f\in E,\;\forall t\in[-1,0],\;f(t)=0\}\\[3pts]G=\{g\in E,\;\forall t\in[0,1],\;g(t)=0\}\end{cases}}
Montrer que {\begin{cases}F^{\bot\!}=G\\G^{\bot\!}=F\end{cases}\ } mais que F et G ne sont pas supplémentaires dans E.