Généralités sur l’orthogonalité

On trouvera ici les exercices corrigés de mathprepa.fr (chapitre « Espaces préhilbertiens réels ») dans la catégorie « Généralités sur l’orthogonalité ».

Convergence faible

(Oral CCInp)
Soit {E} un espace préhilbertien réel.
On dit qu’une suite {(x_{n})_{n\in \mathbb{N}}} de vecteurs de {E} converge faiblement vers {x\in E} si : {\forall y\in E,\;\lim\limits_{n\rightarrow +\infty}(x_{n}-x\mid y) =0}On suppose que {E} est de dimension finie.
Montrer que {(x_{n})} converge faiblement vers {x} si et seulement si {\lim\limits_{n\rightarrow+\infty }||x_{n}-x||=0}.
Montrer que c’est faux en dimension infinie.

Conservation de l’orthogonalité

Soit {E} un espace vectoriel euclidien, et soit {f\in{\mathcal L}(E)}.
On suppose que : {\forall\, (u,v)\in E^{2},\;\left({u}\mid{v}\right)\,=0\Rightarrow\ \left({f(u)}\mid{f(v)}\right)\,=0}
Montrer : {\exists\,\lambda\ge0,\;\forall\, u\in E,\;\left\|{f(u)}\right\|=\lambda\left\|{u}\right\|}.