Puissances et racines de matrices

(Oral Centrale Mp)
Soit {\varphi\in\mathcal{L}(\mathbb{R}^4)}, canoniquement associée à {A=\begin{pmatrix}0&1&1&0\cr -1&-2&1&-2\cr 2&6&-1&4\cr 4&8&-4&7\end{pmatrix}}

  1. Donner une base où la matrice de {\varphi} est {T=\begin{pmatrix}1&1&0&0\cr 0&1&1&0\cr 0&0&1&0\cr 0&0&0&1\end{pmatrix}}
  2. Déterminer les suites {(\alpha_{n})_{n\in\mathbb{N}}}, {(\beta_{n})_{n\in\mathbb{N}}} et {(\gamma_{n})_{n\in\mathbb{N}}} telles que :{\forall\,n\in\mathbb{N},\;A^n=\alpha_{n}A^2+\beta_{n}A+\gamma_{n}I_{4}}
  3. Pour tout {x} réel, soit {B(x)} obtenue en remplaçant {n} par {x} dans l’écriture de {A^{n}} trouvée à la question précédente (donc {B(n)=A^n} pour tout {n\in\mathbb{N}}).

    • Montrer que {\forall\,n\in\mathbb{N},\;B(-n)=A^{-n}}.
    • Avec le développement de {\sqrt[n]{1+x}} en {x=0}, à l’ordre {2}, montrer comment former une matrice {C} telle que {C^n=A}.
      Vérifier que {C=B(1/n)} (avec les notations précédentes).
    • Former {M} telle que {e^{M}\!=\!\displaystyle\sum_{k=0}^{+\infty}\dfrac{M^k}{k!}\!=\!A}

Cliquer ici pour voir (ou cacher) le corrigé
Pour voir ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr, c'est plus de 2500 exercices et 200 problèmes (tous soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. dans une présentation fluide et professionnelle adaptée à toutes les tailles d'écrans, pour une souscription de 20€ (un an) ou 30€ (deux ans).