Sous-espace de matrices qui commutent

Exercice (oral Centrale/Supélec)

Question 1
Déterminer la dimension maximale d’un sous-espace vectoriel {\mathcal{E}} de {\mathcal{M}_2(\mathbb{C})} dont tous les éléments commutent deux à deux (indication : on commencer par étudier le cas où {\mathcal{E}} contient une matrice ayant deux valeurs propres distinctes).
Cliquer ici pour voir (ou cacher) la réponse
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, des Quiz (plus de 600 questions), etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (6 mois), 25€ (1 an) ou 35€ (2 ans).
Question 2.a
Soit {N \in \mathcal{M}_3(\mathbb{C})} nilpotente non nulle.
Montrer que la matrice {N} est semblable à :{N_1=\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}\;\text{ou}\;N_2=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}}
Cliquer ici pour voir (ou cacher) la réponse
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, des Quiz (plus de 600 questions), etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (6 mois), 25€ (1 an) ou 35€ (2 ans).
Question 2.b
Déterminer l’ensemble des matrices qui commutent avec {N_1} (resp. {N_2}).
Cliquer ici pour voir (ou cacher) la réponse
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, des Quiz (plus de 600 questions), etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (6 mois), 25€ (1 an) ou 35€ (2 ans).
Question 3
Déterminer la dimension maximale d’un sous-espace {\mathcal{E}} de {\mathcal{M}_3(\mathbb{C})} dont tous les éléments commutent deux à deux.
On pourra étudier les cas suivants :

  • l’espace {\mathcal{E}} contient une matrice dont le spectre est de cardinal {3}.
  • l’espace {\mathcal{E}} contient une matrice dont le spectre est de cardinal {2}.
  • Les éléments de {\mathcal{E}} ont un spectre de cardinal {1}.

Cliquer ici pour voir (ou cacher) la réponse
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, des Quiz (plus de 600 questions), etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (6 mois), 25€ (1 an) ou 35€ (2 ans).