(Oral Mines-Ponts) On pose {H_n=\displaystyle\sum_{k=1}^{n}\dfrac{1}{k}}. Soit {f(x)=\displaystyle\sum_{n=1}^{+\infty}H_n x^{n}} et {g(x)=\displaystyle\sum_{n=1}^{+\infty} \ln (n) x^{n}}
|
(Oral Mines-Ponts) On pose {H_n=\displaystyle\sum_{k=1}^{n}\dfrac{1}{k}}. Soit {f(x)=\displaystyle\sum_{n=1}^{+\infty}H_n x^{n}} et {g(x)=\displaystyle\sum_{n=1}^{+\infty} \ln (n) x^{n}}
|