Produits de Cauchy

Exercice 1.
Calculer {\displaystyle\sum_{n=0}^{+\infty}\dfrac{n+1}{2^{n}}} avec un produit de Cauchy.
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr, c'est plus de 2500 exercices et 200 problèmes (tous soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. dans une présentation fluide et professionnelle adaptée à toutes les tailles d'écran, pour une souscription de 20€ (un an) ou 30€ (deux ans).

Exercice 2.
On sait que {\displaystyle\sum \dfrac{(-1)^{n}}{\sqrt{n}}} converge.
Mais elle n’est pas absolument convergente.
Montrer que le produit de Cauchy de cette série par elle-même conduit à une série divergente.
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr, c'est plus de 2500 exercices et 200 problèmes (tous soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. dans une présentation fluide et professionnelle adaptée à toutes les tailles d'écran, pour une souscription de 20€ (un an) ou 30€ (deux ans).

Exercice 3.
Par produit de Cauchy, calculer les sommes : {\displaystyle\sum_{n=1}^{+\infty}nz^{n}\;\text{et}\;\displaystyle\sum_{n=1}^{+\infty} n^{2}z^{n}}
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr, c'est plus de 2500 exercices et 200 problèmes (tous soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. dans une présentation fluide et professionnelle adaptée à toutes les tailles d'écran, pour une souscription de 20€ (un an) ou 30€ (deux ans).

Exercice 4.
Rayon et somme de {\displaystyle\sum_{n\ge1}H_{n}x^{n}}{H_{n}=\displaystyle\sum_{k=1}^{n}\dfrac{1}{k}}
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr, c'est plus de 2500 exercices et 200 problèmes (tous soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. dans une présentation fluide et professionnelle adaptée à toutes les tailles d'écran, pour une souscription de 20€ (un an) ou 30€ (deux ans).

Exercice 5.
Pour {(p,z)\in\mathbb{N}\times\mathbb{C}} avec {\left|{z}\right|\lt 1}, montrer : {\dfrac{1}{(1-z)^{p+1}}=\displaystyle\sum_{n=0}^{+\infty}\dbinom{p+n}{p}z^{n}}
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr, c'est plus de 2500 exercices et 200 problèmes (tous soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. dans une présentation fluide et professionnelle adaptée à toutes les tailles d'écran, pour une souscription de 20€ (un an) ou 30€ (deux ans).

Exercice 6.
{\exp(z)=\displaystyle\sum_{n=0}^{+\infty}\dfrac{z^{n}}{n!}} est la définition de la fonction exponentielle complexe. Montrer : {\forall(a,b)\in\mathbb{C}^2,\;\exp(a+b)=\exp(a)\exp(b)}
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr, c'est plus de 2500 exercices et 200 problèmes (tous soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. dans une présentation fluide et professionnelle adaptée à toutes les tailles d'écran, pour une souscription de 20€ (un an) ou 30€ (deux ans).