Produit scalaire, norme, distance

Exercices corrigés


Exercice 1.
Soit {E} préhilbertien réel, et {f:E\rightarrow E} telle que : {\forall\, (x,y),\;\left(f(x)\mid y\right)=\left(x\mid f(y)\right)}Montrer que {f} est linéaire.
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr, c'est plus de 2500 exercices et 200 problèmes (tous soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. dans une présentation fluide et professionnelle adaptée à toutes les tailles d'écran, pour une souscription de 20€ (un an) ou 30€ (deux ans).

Exercice 2.
Soit {E} un espace préhilbertien réel.
Soit {f} une application telle que {f(0)=0} et : {(\star)\;\forall x,y\in E,\;\left\|{f(x)-f(y)}\right\|=\left\|{x-y}\right\|}Montrer que {f} conserve le produit scalaire.
En déduire que {f} est linéaire.
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr, c'est plus de 2500 exercices et 200 problèmes (tous soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. dans une présentation fluide et professionnelle adaptée à toutes les tailles d'écran, pour une souscription de 20€ (un an) ou 30€ (deux ans).

Exercice 3.
Soit {E} un espace préhilbertien réel.
Montrer que, pour tous {x,y} dans {E} : {2+\left\|x+y\right\|^2\le2(1+\left\|x\right\|^2)(1+\left\|y\right\|^2)}
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr, c'est plus de 2500 exercices et 200 problèmes (tous soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. dans une présentation fluide et professionnelle adaptée à toutes les tailles d'écran, pour une souscription de 20€ (un an) ou 30€ (deux ans).

Exercice 4.
On munit {E=\mathbb{R}[X]} du produit scalaire {\left({P}\mid{Q}\right)=\displaystyle\int_{0}^{1}P(t)Q(t)\,\text{d}t}.
Soit {\varphi:E\to\mathbb{R}} la forme linéaire définie par {\varphi(P)=P(0)}.
Montrer qu’il n’existe pas de {A\in E} tel que : {\forall P\in E,\;\varphi(P)=\,\left({A}\mid{P}\right)}.
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr, c'est plus de 2500 exercices et 200 problèmes (tous soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. dans une présentation fluide et professionnelle adaptée à toutes les tailles d'écran, pour une souscription de 20€ (un an) ou 30€ (deux ans).