Nombre dérivé, fonction dérivée

Plan du chapitre "Dérivabilité"

Dérivabilité en un point, nombre dérivé

Dans tout ce chapitre, on considère des fonctions qui sont définies sur un intervalle {I} de {\mathbb{R}} non réduit à un point, et qui sont à valeurs dans {\mathbb{R}}.

On se place au voisinage d’un point {A(a,f(a))} de la courbe représentative {(\Gamma)} de {f}.

Soit {M(x,f(x))} un point mobile sur {(\Gamma)}, avec {x\ne a}.

La droite {\Delta_{x}} passant par {A} et {M} a pour coefficient directeur de {\Delta_{x}} est {\delta_{x}=\dfrac{f(x)-f(a)}{x-a}}.

Quand {x} tend vers {a} (donc sur la figure ci-dessous quand {M} se rapproche de {A} sur {(\Gamma)}) on examine si {\Delta_{x}} (qui pivote autour de {A}) possède une position limite {\Delta} (c’est-à-dire si {\delta_{x}} possède une valeur limite).

Si tel est le cas, on dit que la droite {\Delta} est la tangente en {A} à la représentation graphique {(\Gamma)}.

Définition (nombre dérivé en un point)
Soit {f:I\to\mathbb{R}} une fonction numérique réelle. Soit {a} un élément de {I}.
On dit que {f} est dérivable en {a} si {\displaystyle\lim_{x\to a}\dfrac{f(x)-f(a)}{x-a}} existe dans {\mathbb{R}}.
Cette limite est appelée nombre dérivé de {f} en {a} et est notée {f'(a)}, ou {D(f)(a)}, ou {\dfrac{\text{d}f}{\text{d}x}(a)}.

Interprétation géométrique

Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, des Quiz (plus de 600 questions), etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (6 mois), 25€ (1 an) ou 35€ (2 ans).

Page suivante : Rolle et accroissements finis