L’urne d’Ehrenfest, épisode 1

Une urne contient {N} boules indiscernables au toucher, de couleur bleue ou rouge.
On répète la « manipulation » suivante:
« tirer une boule au hasard de l’urne et la remplacer par une boule de la couleur opposée »
On note {X_{n}} le nombre de boules bleues après la {n}-ième manipulation.

  1. Donner {\mathbb{P}(X_{n+1}=i)} en fonction de {\mathbb{P}(X_{n}=i-1)} et {\mathbb{P}(X_{n}=i+1)}.
  2. En déduire que {\text{E}(X_{n+1})=1+\Bigl(1-\dfrac{2}{N}\Bigr)\text{E}(X_{n})}.
  3. Calculer {\text{E}(X_{n})} et sa limite quand {n\rightarrow+\infty}.

Cliquer ici pour voir (ou cacher) le corrigé
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, des Quiz (plus de 600 questions), etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (6 mois), 25€ (1 an) ou 35€ (2 ans).