Une loi de probabilité (Oral Tpe) Soit {X} une variable aléatoire telle que :{\forall\,k\in\mathbb{N}^{*},\;\mathbb{P}(X = k) =\dfrac{k-1}{2^{k}}} Vérifier que {\displaystyle\sum_{k=1}^{+\infty}\mathbb{P}(X = k) = 1}. Donner la fonction génératrice de {X}. Quel est son rayon de convergence ? Quelle est l’espérance de {X}? Cliquer ici pour voir (ou cacher) le corrigé Pour voir la suite de ce contenu, vous devez : avoir une souscription active sur mathprepa et être connecté au site Pour poursuivre votre exploration, vous pouvez : revenir à la page d'accueil ou tester la page d'extraits libres ou consulter le plan du site