(Oral Ccp) Existence de {I=\displaystyle\int_{0}^{1}\dfrac{t\ln^{2}t}{(1-t)^{2}}\,\text{d}t}. Montrer que {I=2\Bigl(\displaystyle\sum_{n=1}^{+\infty}\dfrac{1}{n^{2}}-\displaystyle\sum_{n=1}^{+\infty}\dfrac{1}{n^{3}}\Bigr)} |
(Oral Ccp) Existence de {I=\displaystyle\int_{0}^{1}\dfrac{t\ln^{2}t}{(1-t)^{2}}\,\text{d}t}. Montrer que {I=2\Bigl(\displaystyle\sum_{n=1}^{+\infty}\dfrac{1}{n^{2}}-\displaystyle\sum_{n=1}^{+\infty}\dfrac{1}{n^{3}}\Bigr)} |