| (Oral Mines-Ponts 2018) Montrer que {\displaystyle\int_{0}^{1}\dfrac{\ln (1-t^{2})\ln (t)}{t^{2}}\,\text{d}t=\displaystyle\sum\limits_{n=1}^{+\infty}\dfrac{1}{n(2n-1)^{2}}}. |
| (Oral Mines-Ponts 2018) Montrer que {\displaystyle\int_{0}^{1}\dfrac{\ln (1-t^{2})\ln (t)}{t^{2}}\,\text{d}t=\displaystyle\sum\limits_{n=1}^{+\infty}\dfrac{1}{n(2n-1)^{2}}}. |