Sommes doubles (2/2)

Exercices corrigés


Exercice 1.
Calculer {S_{n}=\displaystyle\sum_{1\le i\le j\le n}ij}, et {T_{n}=\displaystyle\sum_{1\le i\lt j\le n}\dfrac{i}{j}}.
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez :

Exercice 2.
Calculer {S_n=\displaystyle\sum_{1\le j\le k\le n}jk} deux manières différentes.
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez :

Exercice 3.
On se donne {a_1,a_2,\ldots,a_n} dans {\mathbb{R}}.

Montrer que {\displaystyle\sum_{j=1}^{n}\Bigl(\displaystyle\sum_{k=1}^{n}\dfrac{a_ja_k}{j+k}\Bigr)\ge0}. Cas d’égalité?

Cliquer ici pour voir (ou cacher) le corrigé
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez :
Author: Jean-Michel Ferrard

Professeur de mathématiques en classe préparatoire aux grandes écoles.