Sommes de sous-espaces vectoriels

Exercices corrigés


Exercice 1.
Montrer que dans l’espace vectoriel {E} de toutes les fonctions {f} de {\mathbb{R}} dans {\mathbb{R}}, les ensembles {\mathcal P} et {\mathcal I} formés respectivement des fonctions paires et impaires forment
deux sous-espaces vectoriels supplémentaires.
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, des Quiz (plus de 600 questions), etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (6 mois), 25€ (1 an) ou 35€ (2 ans).

Exercice 2.
Soient {A,B,C,D} quatre sous-espaces de {E} tels que {E=A\oplus B=C\oplus D}.
On suppose que {A\subset C} et {B\subset D}. Montrer que {A=C} et {B=D}.
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, des Quiz (plus de 600 questions), etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (6 mois), 25€ (1 an) ou 35€ (2 ans).

Exercice 3.
Soit {E} un {\mathbb{K}}-espace vectoriel.

  1. Soient {E_1} et {E_2} deux sous-espaces de {E} tels que {E=E_1+E_2}, et soit {F_2} un supplémentaire de {E_1\cap E_2} dans {E_2}.
    Montrer que {E=E_1\oplus F_2}.
  2. Soient {E_1,E_2,\ldots,E_n} des sous-espaces de {E} tels que {E=\displaystyle\sum_{k=1}^{n}E_k}.
    Montrer qu’il existe des sous-espaces {F_1,F_2,\ldots,F_n} de {E} tels que {F_j\subset E_j} pour tout indice {j} et tels que {E=F_1\oplus F_2\oplus\cdots\oplus F_n}.

Cliquer ici pour voir (ou cacher) le corrigé
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, des Quiz (plus de 600 questions), etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (6 mois), 25€ (1 an) ou 35€ (2 ans).