| (Oral Mines-Ponts 2018) On pose {f(x)=\displaystyle\int_{0}^{+\infty}\dfrac{e^{-tx}}{1+t^{2}}\text{d}t}, et :{g(x)=\cos x\displaystyle\int_{x}^{+\infty}\dfrac{\sin t}{t}-\sin x\displaystyle\int_{x}^{+\infty}\dfrac{\cos t}{t}}
|
| (Oral Mines-Ponts 2018) On pose {f(x)=\displaystyle\int_{0}^{+\infty}\dfrac{e^{-tx}}{1+t^{2}}\text{d}t}, et :{g(x)=\cos x\displaystyle\int_{x}^{+\infty}\dfrac{\sin t}{t}-\sin x\displaystyle\int_{x}^{+\infty}\dfrac{\cos t}{t}}
|