(Oral Mines) Montrer {I=\!\!\displaystyle\int_{0}^{1}\!\!\dfrac{{\ln(x)\ln(1\!-\!x)}}{x}\text{d}x=\displaystyle\sum_{n=1}^{+\infty}\dfrac{1}{n^{3}}} |
(Oral Mines) Montrer {I=\!\!\displaystyle\int_{0}^{1}\!\!\dfrac{{\ln(x)\ln(1\!-\!x)}}{x}\text{d}x=\displaystyle\sum_{n=1}^{+\infty}\dfrac{1}{n^{3}}} |