Espaces de dimension finie

Exercices corrigés


Exercice 1.
Dans {\mathbb{R}^4}, soit {E} l’ensemble des {u=(x,y,z,t)} tels que {\begin{cases}x+3y-2z-5t=0\\ x+2y+z-t=0\end{cases}}
Montrer que E est un sous-espace de {\mathbb{R}^4}.
En donner la dimension et une base.
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (six mois), 25€ (un an) ou 35€ (deux ans).

Exercice 2.
Dans {\mathbb{R}^4}, donner la dimension du sous-espace engendré par : {\begin{cases}a=(1,2,2,1)\\b=(4,3,10,5)\\c=(-1,-3,4,0)\\d=(0,4,-3,-1)\end{cases}}
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (six mois), 25€ (un an) ou 35€ (deux ans).

Exercice 3.
On définit les trois sous-espaces suivants de {E=\mathbb{K}_3[X]} : {\begin{cases}F=\{P\in E, P(0)=P(1)=P(2)=0\}\\G=\{P\in E, P(1)=P(2)=P(3)=0\}\\H=\{P\in E, P(X)=P(-X)\}\end{cases}}

  • Montrer que {F\oplus G=\{P\in E,P(1)=P(2)= 0\}}.
  • Montrer que {E=F\oplus G\oplus H}.

Cliquer ici pour voir (ou cacher) le corrigé
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (six mois), 25€ (un an) ou 35€ (deux ans).

Exercice 4.
Soit {E} un {\mathbb{K}}-espace vectoriel de dimension {n}.
Soient {F} et {G} deux sous-espaces de {E}, tels que {\dim(F)=\dim(G)=r}.
Montrer qu’il existe un sous-espace {H} de {E} tel que {E=F\oplus H=G\oplus H}.
Indication: utiliser une récurrence descendante sur l’entier {r}.
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (six mois), 25€ (un an) ou 35€ (deux ans).

Exercice 5.
On se donne une subdivision {x_0=a\lt x_1\lt \ldots x_{n-1}\lt x_n=b} de {[a,b]}.
Soit {F} l’ensemble des {f:[a,b]\rightarrow\mathbb{R}} qui sont affines sur chaque {[x_k,x_{k+1}]}.
Montrer que {F} est un espace vectoriel. En donner la dimension et une base.
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir la suite de ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr est le site des mathématiques et de l'informatique des deux années des classes prépa scientifiques: plus de 2500 exercices et 200 problèmes (soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. Un contenu sans équivalent, dans une présentation fluide et professionnelle adaptée à tous les écrans, pour une souscription de 15€ (six mois), 25€ (un an) ou 35€ (deux ans).