Exercice 1. Prouver l’égalité {\displaystyle\int_{0}^{1}\dfrac{\ln(t)}{1-t^{2}}\,\text{d}t=-\dfrac{\pi^{2}}{8}}. |
Exercice 2. Prouver l’égalité {\displaystyle\int_{0}^{+\infty}\dfrac{t\,\text{d}t}{\text{e}^{t}-1}=\dfrac{\pi^{2}}{6}}. |
Exercice 1. Prouver l’égalité {\displaystyle\int_{0}^{1}\dfrac{\ln(t)}{1-t^{2}}\,\text{d}t=-\dfrac{\pi^{2}}{8}}. |
Exercice 2. Prouver l’égalité {\displaystyle\int_{0}^{+\infty}\dfrac{t\,\text{d}t}{\text{e}^{t}-1}=\dfrac{\pi^{2}}{6}}. |