Euler 021

Soit {d(n)} la somme des diviseurs {k} de {n}, avec {1\le k \lt n}.
Deux entiers positifs {a} et {b} sont dits amiables si {d(a)=b}, {d(b)=a} et {a\ne b}.
Par exemple, les diviseurs stricts de {220} sont {1}, {2}, {4}, 5, {10}, {11}, {20}, {22}, {44}, {55} et {110}, donc {d(220) = 284}. Les diviseurs stricts de {284} sont {1}, {2}, {4}, {71} et {142}, donc {d(284) = 220}: les deux entiers {220} et {284} sont donc amiables.
Calculer la somme de toutes les paires de nombres amiables strictement inférieurs à {N}.
Dans l’énoncé initial du « Project Euler », on a {N=10000}, et la réponse est {31626}.
Cliquer ici pour voir (ou cacher) le corrigé
Pour voir ce contenu, vous devez : Pour poursuivre votre exploration, vous pouvez : Mathprepa.fr, c'est plus de 2500 exercices et 200 problèmes (tous soigneusement corrigés), un cours complet (maths et info), plus de 400 sujets de concours, etc. dans une présentation fluide et professionnelle adaptée à toutes les tailles d'écrans, pour une souscription de 20€ (un an) ou 30€ (deux ans).

Author: Jean-Michel Ferrard

Professeur de mathématiques en classe préparatoire aux grandes écoles.