TD N°26 Énoncé

Un produit scalaire entre polynômes

Partie I

Pour tout P de $\mathbb{R}[X]$, on note $\varphi(P) = (1 - X^2)P'' - 3XP'$.

- 1. (a) Montrer que φ est un endomorphisme de $\mathbb{R}[X]$.
 - (b) Pour tout k de \mathbb{N} , calculer $\varphi(X^k)$.
 - (c) Pour tout P de $\mathbb{R}[X]$, calculer le degré de $\varphi(P)$ en fonction de celui de P.
 - (d) Quel est le noyau de φ ? L'endomorphisme φ est-il surjectif?
- 2. Pour tout n de \mathbb{N} , on note φ_n la restriction de φ_n de φ à $\mathbb{R}_n[X]$.
 - (a) Montrer que $\mathbb{R}_n[X]$ est stable par φ_n .
 - (b) Écrire la matrice A_n de φ_n dans la base $1, X, \dots, X^n$.
 - (c) Préciser le rang de $\varphi_n \lambda \text{Id}$ suivant les valeurs du réel λ .
- 3. Dans cette question, n est un entier naturel fixé quelconque.

On pose
$$\lambda_n = -n(n+2)$$
. On note $E_n = \ker(\varphi - \lambda_n \operatorname{Id}) = \{P \in \mathbb{R}[X], \ \varphi(P) = \lambda_n P\}$.

- (a) Montrer que tout élément non nul de E_n est nécessairement de degré n.
- (b) Inversement montrer que E_n est une droite vectorielle (utiliser (2c)). Dans la suite de ce problème, on notera U_n l'unique polynôme unitaire de E_n .
- 4. Ainsi U_n est l'unique polynôme unitaire tel que $\varphi(U_n) = \lambda_n U_n$ (il est de degré n).
 - (a) Calculer les polynômes U_0, U_1, U_2 et U_3 .
 - (b) Montrer que U_n a la parité de n (indication : considérer $V_n(X) = (-1)^n U_n(-X)$).
 - (c) Si $n \ge 2$, montrer que le coefficient de X^{n-2} dans U_n est $\frac{1-n}{4}$.

Partie II

Pour tous P, Q de $\mathbb{R}[X]$, on note $(P \mid Q) = \int_{-1}^{1} P(t)Q(t)\sqrt{1-t^2} dt$.

- 1. (a) Montrer qu'on définit ainsi un produit scalaire sur $\mathbb{R}[X]$. Il est clair que pour tous A, B, C de $\mathbb{R}[X]$, on a $(AB \mid C) = (A \mid BC)$.
 - (b) Montrer que pour tous P,Q de $\mathbb{R}[X]$, on a $(\varphi(P)\mid Q)=(P\mid \varphi(Q))$. Indication : on pourra considérer l'application $t\mapsto \left((1-t^2)^{3/2}P'(t)\right)'$.
- 2. (a) Montrer que $(U_n)_{n\geqslant 0}$ est une famille orthogonale pour ce produit scalaire.
 - (b) En déduire que pour tout n de \mathbb{N}^* , et pour tout Q de $\mathbb{R}_{n-1}[X]$, on a $(U_n \mid Q) = 0$.
- 3. (a) Montrer que $U_n XU_{n-1}$ est de degré au plus n-1 et qu'il est orthogonal à tout polynôme de degré strictement inférieur à n-2 (pour $n \ge 3$).
 - (b) En déduire que $U_n XU_{n-1}$ est combinaison linéaire de U_{n-1} et de U_{n-2}
 - (c) En utilisant (I.4), montrer que $4U_n 4XU_{n-1} + U_{n-2} = 0$ pour $n \ge 2$.
 - (d) Calculer $U_n(1)$.
- 4. (a) Montrer que pour tout réel θ , $\sin(n+1)\theta = 2^n(\sin\theta)U_n(\cos\theta)$ (utiliser (II.3b)).
 - (b) En déduire les différentes racines de U_n .