Problème Énoncé

Les formules « à la John Machin »

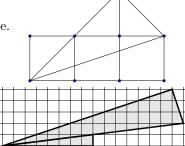
Le problème est consacré à quelques-unes des (très) nombreuses formules qui expriment π (ou plutôt $\pi/4$) sous la forme d'une combinaison linéaire à coefficients entiers d'arc-tangentes d'inverses d'entiers.

 $\label{eq:Laplus célèbre est : } \frac{\pi}{4} = 4\arctan\frac{1}{5} -\arctan\frac{1}{239} \mbox{ (John Machin, 1706, avec laquelle il calcula 100 décimales de π)}.$

Pour cette raison, les formules : $\frac{\pi}{4} = a_1 \arctan \frac{1}{b_1} + a_2 \arctan \frac{1}{b_2} + \dots + a_p \arctan \frac{1}{b_p}$, où les a_k et les b_k sont des entiers (les $b_k \ge 2$), sont souvent appelées formules "à la Machin".

Première partie : Machin et Fibonacci

- 1. Les questions (1a) et (1b) doivent être traitées uniquement par la géométrie.
 - (a) Observer la figure ci-contre et en déduire : $\frac{\pi}{4} = \arctan \frac{1}{2} + \arctan \frac{1}{3}$.
 - (b) Avec la figure ci-contre, établir : $\arctan\frac{1}{3}=\arctan\frac{1}{5}+\arctan\frac{1}{8}$: En déduire une nouvelle formule "à la Machin".



2. On définit la suite de Fibonacci par $F_0=0,\,F_1=1$ et, pour tout $n\geqslant 2:F_n=F_{n-1}+F_{n-2}.$

On pose également, pour tout $n \ge 1$: $G_n = \arctan \frac{1}{F_n}$.

- (a) Prouver l'égalité $F_{n+1}^2 = F_n F_{n+2} + (-1)^n$, pour tout n de \mathbb{N} .
- (b) En déduire l'égalité $G_{2n}=G_{2n+1}+G_{2n+2}$ pour tout $n\geqslant 1$. Écrire les égalités qui en résultent pour $n=1,\ n=2$ et n=3.
- (c) Pour tout entier $n \ge 2$, en déduire les formules "à la Machin" : $\frac{\pi}{4} = \sum_{k=1}^{n-1} \arctan \frac{1}{F_{2k+1}} + \arctan \frac{1}{F_{2n}}$ Expliciter la formule si n=4. Qu'obtient-on quand $n \to +\infty$?

Deuxième partie : Machin et Lehmer

- 1. Dans cette question, z = a + ib est un nombre complexe donné, avec a dans \mathbb{R} et b dans \mathbb{R}^* .
 - (a) Exprimer l'argument de z (modulo π) en fonction de $\arctan \frac{b}{a}$ si $a \neq 0$ (et préciser le cas a = 0).
 - (b) On pose $\varphi(z) = (-n+i)z$, où n est la partie entière de $\frac{a}{b}$. Montrer que si b > 0 alors $0 \le \operatorname{Im} \varphi(z) < b$, et que si b < 0 alors $b < \operatorname{Im} \varphi(z) \le 0$.
- 2. Dans cette question, a et b sont donnés dans \mathbb{Z}^* .

On définit une suite $z_0,z_1,\cdots,z_k,\cdots$, de premier terme $z_0=a+ib$, de la façon suivante :

Si z_k est connu et si $\text{Im } z_k \neq 0$, on pose $z_{k+1} = \varphi(z_k)$ (voir II.1.b).

- (a) Montrer que la suite (z_k) est finie. Il existe donc un plus petit $p \ge 1$ tel que $\operatorname{Im} z_p = 0$.
- (b) En déduire l'existence d'entiers n_0, \ldots, n_{p-1} tels que : $\arctan \frac{b}{a} \equiv \sum_{k=0}^{p-1} \arctan \frac{1}{n_k} \pmod{\pi}$. NB : $\sin n_k = 0$, on convient que $\arctan \frac{1}{n_k} \equiv \frac{\pi}{2} \pmod{\pi}$.
- 3. L'algorithme qui passe de z=a+ib à la liste $[n_0,n_1,\ldots,n_{p-1}]$ est attribué à D.H.Lehmer (1938).
 - (a) Effectuer les calculs pour z = 20 + 3i. En déduire : $\arctan \frac{3}{20} = \arctan \frac{1}{6} \arctan \frac{1}{62} \arctan \frac{1}{7628}$
 - (b) Écrire une procédure Maple Lehmer prenant en argument un nombre complexe z (supposé sous la forme z=a+ib avec a,b dans \mathbb{Z}^*) et qui renvoie la liste $[n_0,n_1,\ldots,n_{p-1}]$.

On rappelle l'existence des fonctions intégrées Re, Im et floor.

Énoncé Problème

Troisième partie : Machin et Gregory

Pour tout n de \mathbb{N} , et tout x de [0,1], on pose $u_n(x) = \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{2k+1}$.

Ainsi, et pour que les notations soient bien claires :

$$u_0(x) = x$$
, $u_1(x) = x - \frac{x^3}{3}$, $u_2(x) = x - \frac{x^3}{3} + \frac{x^5}{5}$, \dots , $u_n(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1}$

- 1. Pour tout t de [0,1], montrer que $u'_n(t) = \frac{1}{1+t^2} + (-1)^n R_n(t)$, avec $R_n(t) = \frac{t^{2n+2}}{1+t^2}$.
- 2. En déduire que, pour tout n de \mathbb{N} et tout x de [0,1], on a : $u_n(x) = \arctan x + (-1)^n \int_{\mathbb{R}}^x R_n(t) dt$.
- 3. En remarquant que $0 \leqslant R_n(t) \leqslant t^{2n+2}$ pour $0 \leqslant t \leqslant 1$, montrer que :
 - (a) pour tout n de \mathbb{N} , on a : $u_{2n+1}(x) \leq \arctan x \leq u_{2n}(x)$
 - (b) pour tout n de \mathbb{N} , on a la majoration : $|\arctan x u_n(x)| \leq \frac{x^{2n+3}}{2n+3}$
- 4. Déduire de ce qui précède que la suite $n\mapsto u_n(x)$ converge vers $\arctan x$. On exprime cela symboliquement par la "formule de Gregory" (1672) : $\forall x \in [0,1]$, $\arctan x = \sum_{k=0}^{+\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$ NB : le résultat de (III.3.a) dit que deux $u_n(x)$ successifs encadrent arctan x.
- 5. Soit (F): $\frac{\pi}{4} = \sum_{j=1}^{P} a_j \arctan \frac{1}{b_j}$ une formule "à la Machin" (les a_j dans \mathbb{Z} , les $b_j \geqslant 2$ dans \mathbb{N}). On suppose par exemple $2 \le b_1 < b_2 < \ldots < b_p$. Pour tout n de \mathbb{N} , on pose : $v_n = 4 \sum_{i=1}^{r} a_j u_n \left(\frac{1}{b_i}\right)$.
 - (a) Montrer que $\lim_{n\to\infty}v_n=\pi$. Justifier que si on recherche la rapidité de la convergence vers π on doit privilégier les formules (F) avec la plus grande valeur de b_1 possible.
 - (b) Dans le cas où (F) est la formule de John Machin, estimer à partir de quand on a $|\pi v_n| \leq 10^{-100}$.

Quatrième partie : Machin et Gauss

- 1. Soit (x,y) dans \mathbb{R}^2 , avec $|x| \ge 1$ et |y| > 1. Prouver les trois égalités suivantes : $\arctan \frac{1}{x} + \arctan \frac{1}{y} = \arctan \frac{x+y}{xy-1}$; $\arctan \frac{1}{x} - \arctan \frac{1}{y} = \arctan \frac{y-x}{1+xy}$; $2\arctan \frac{1}{y} = \arctan \frac{2y}{y^2-1}$
- 2. Démontrer la formule de John Machin : $\frac{\pi}{4} = 4 \arctan \frac{1}{5} \arctan \frac{1}{230}$
- 3. Montrer successivement les égalités suivantes :

(a):
$$\arctan \frac{1}{5} = \arctan \frac{17}{331} + \arctan \frac{123}{836}$$
 (b): $\arctan \frac{123}{836} = 2 \arctan \frac{3}{41}$

$$(c): \ \arctan \frac{17}{331} = \arctan \frac{1}{18} - \arctan \frac{1}{239} \quad (d): \ \arctan \frac{3}{41} = \arctan \frac{1}{18} + \arctan \frac{1}{57}$$

4. En déduire la formule "à la Machin" : $\frac{\pi}{4}=12\arctan\frac{1}{18}+8\arctan\frac{1}{57}-5\arctan\frac{1}{220}$

Cette formule, attribuée à Gauss, a permis de calculer un million de décimales de π en 1974.