Réduction

Exercices corrigés

L’urne d’Ehrenfest, épisode 2

On reprend les notations et résultats de l’épisode 1.
On forme ici la matrice de transition associée à ce processus de Markov, et on l’interprète comme celle d’un endomorphisme \varphi de {\mathbb{R}_{N}[X]} dans la base canonique.
Si {t\mapsto G_{n}(t)} est la fonction génératrice de {X_{n}}, on voit que {G_{n+1}=\varphi(G_{n})}.
On retrouve alors la relation {\text{E}(X_{n+1})=1+\Bigl(1-\dfrac{2}{N}\Bigr)\text{E}(X_{n})}.

Matrices bistochastiques, épisode 9

Soit {B_{n}\in\mathcal{M}_n(\mathbb{R})} la matrice de terme général {(b_{i,j})_{1\le i,j\le n}} définie par:
{\begin{cases}b_{i,i+1}=b_{i+1,i}=\dfrac{1}{2}\text{\ si }1\le i\lt n\\b_{1,1}=b_{n,n}=\dfrac{1}{2},\text{\ et\ }b_{i,j}=0\text{\ dans les autres cas}\end{cases}}On diagonalise B_n, on étudie la limite de ses puissances, et on illustre les résultats avec l’aide du langage Python.