Probabilités

Déplacements dans Z2

Un module, initialement en {(0,0)}, se déplace dans {\mathbb{Z}^2} dans l’une des directions (N,S,E,O) de manière équiprobable. On note {A_{n}=(X_{n},Y_n)} sa position à l’instant {n}, et {Z_{n}} sa distance à l’origine.
Donner {\text{E}(X_{n})}, {\text{V}(X_{n})}. Montrer que {\text{E}(Z_{n})\leq \sqrt{n}}, et calculer {\mathbb{P}(Z_{n}=0)}.

Un exercice très improbable

On suppose {X_{1}\leadsto\mathcal{P}(\lambda_1)}, {X_{2}\leadsto\mathcal{P}(\lambda_2)}, et Y(\Omega)\subset\{-1,1\}, avec {p=\mathbb{P}(Y=-1)}.
On suppose {X_{1},X_{2},Y} indépendantes. Soit {M=\begin{pmatrix} X_{1}^{2} & X_{2}^{2} \\ YX_{2}^{2} & X_{1}^{2}\end{pmatrix}}.
Donner la probabilité pour que {M} soit diagonalisable dans \mathcal{M}_{2}(\mathbb{R}).