Mines-Ponts

Oraux du concours Mines-Ponts

Un développement asymptotique

(oral Mines-Ponts 2015)
On considère l’équation (E_n):\text{e}^x=x^n, avec n\in\mathbb{N}.
1. Montrer que pour n assez grand (E_n) a dans {\mathbb{R}^{+*}} deux solutions {u_{n}\lt v_{n}}.
2. Montrer que la suite {(u_{n})} converge vers une limite {\ell} que l’on précisera. Donner un équivalent de {u_{n}-\ell} quand {n} tend vers {+\infty}.
3. Calculer {\displaystyle\lim_{n\rightarrow+\infty}v_{n}} puis donner un équivalent de {v_{n}} quand {n} tend vers {+\infty}.
4. Donner un développement asymptotique à deux termes de {v_{n}}.

Série et produit infini

(Oral Mines-Ponts)
Soit {x\in\,\mathbb{R}^{+*}}. On pose : {u_{n}=\dfrac{n!}{x^{n}}\,\displaystyle\prod_{k=1}^{n}\ln\Bigl(1+\dfrac{x}{k}\Bigr)}.
Préciser {\displaystyle\lim_{n\to+\infty}u_n(x)}.
Étudier la convergence de {\displaystyle\sum\Bigl(v_{n}-\alpha\ln\Bigl(1+\dfrac{1}{n}\Bigr)\Bigr)}.
En déduire qu’il existe {A > 0} tel que {u_{n}\underset{+\infty}{\sim} An^{\alpha}}.