Inp

Oraux du concours INP (ex CCP)

Convergence faible

(Oral CCInp)
Soit {E} un espace préhilbertien réel.
On dit qu’une suite {(x_{n})_{n\in \mathbb{N}}} de vecteurs de {E} converge faiblement vers {x\in E} si : {\forall y\in E,\;\lim\limits_{n\rightarrow +\infty}(x_{n}-x\mid y) =0}On suppose que {E} est de dimension finie.
Montrer que {(x_{n})} converge faiblement vers {x} si et seulement si {\lim\limits_{n\rightarrow+\infty }||x_{n}-x||=0}.
Montrer que c’est faux en dimension infinie.