Concours Inp

Exercices corrigés

Une série de produits

(Oral Ccp)
Soit {(a_{n})_{n\geq 1}} une suite de {\mathbb{R}^+}.
On pose : {u_{n}=\dfrac{a_{n}}{\left(1+a_{1}\right) \ldots \left(1+a_{n}\right)}}
Calculer {u_{1}+u_{2}}, et généraliser.
Montrer que la série {\displaystyle\sum_{n\ge1}u_{n}} converge.
Calculer {\displaystyle\sum\limits_{n=1}^{+\infty}u_{n}} quand {a_{n}=\dfrac{1}{\sqrt{n}}}.

Convergence faible

(Oral CCInp)
Soit {E} un espace préhilbertien réel.
On dit qu’une suite {(x_{n})_{n\in \mathbb{N}}} de vecteurs de {E} converge faiblement vers {x\in E} si : {\forall y\in E,\;\lim\limits_{n\rightarrow +\infty}(x_{n}-x\mid y) =0}On suppose que {E} est de dimension finie.
Montrer que {(x_{n})} converge faiblement vers {x} si et seulement si {\lim\limits_{n\rightarrow+\infty }||x_{n}-x||=0}.
Montrer que c’est faux en dimension infinie.