Espaces euclidiens

Exercices corrigés

Conservation de l’orthogonalité

Soit {E} un espace vectoriel euclidien, et soit {f\in{\mathcal L}(E)}.
On suppose que : {\forall\, (u,v)\in E^{2},\;\left({u}\mid{v}\right)\,=0\Rightarrow\ \left({f(u)}\mid{f(v)}\right)\,=0}
Montrer : {\exists\,\lambda\ge0,\;\forall\, u\in E,\;\left\|{f(u)}\right\|=\lambda\left\|{u}\right\|}.