Concours Centrale

Exercices corrigés

Fonctions additives bornées à l’origine

(Oral Centrale)
Soit {f\colon\mathbb{R}\in\mathbb{R}} telle que : {\forall\,(x,y)\in\mathbb{R}^{2},\;f(x+y)=f(x)+f(y)}Déterminer {f(0)}. Pour {x\in\mathbb{R}} et {\lambda\in\mathbb{Q}}, exprimer {f(\lambda x)} en fonction de {f(x)}.
On suppose {f} continue en {0}. Montrer que {f} est continue sur {\mathbb{R}}. Dans ce cas, déterminer {f}.
Idem avec {f} bornée au voisinage de {0}.

Limite de fonctions inverses

(Oral Centrale 2018)
On pose : {\forall\,n\in\mathbb{N}^{*},\;A_{n}:x\mapsto\displaystyle\sum\limits_{k=1}^{n}\dfrac{x^{k}}{k}}.
Montrer que : {\forall\,y\in\mathbb{R}^{+},\;\exists\,!\,x\in\mathbb{R}^{+},\;A_{n}(x)=y}.
On note {x=f_{n}(y)}. Tracer des fonctions {f_n}.
Montrer que la suite {(f_n)_{n\ge1}} converge simplement sur {\mathbb{R}^+} vers {f\colon x\mapsto1-\text{e}^{-x}}.