Concours Centrale

Exercices corrigés

Fonctions additives bornées à l’origine

(Oral Centrale)
Soit {f\colon\mathbb{R}\in\mathbb{R}} telle que : {\forall\,(x,y)\in\mathbb{R}^{2},\;f(x+y)=f(x)+f(y)}Déterminer {f(0)}. Pour {x\in\mathbb{R}} et {\lambda\in\mathbb{Q}}, exprimer {f(\lambda x)} en fonction de {f(x)}.
On suppose {f} continue en {0}. Montrer que {f} est continue sur {\mathbb{R}}. Dans ce cas, déterminer {f}.
Idem avec {f} bornée au voisinage de {0}.

Nombres de Bell

(Oral Centrale 2018)
On pose {u_{0}=1} et : {\forall\,n\in\mathbb{N},\;u_{n+1}=\displaystyle\sum\limits_{k=0}^{n}\dbinom{n}{k}u_{k}}.
Écrire une fonction Python calculant {u_n}.
Conjecturer la valeur de {\dfrac{1}{\text{e}}\displaystyle\sum\limits_{k\ge 0}\dfrac{k^{n}}{k!}}.
Prouver cette conjecture. Calculer {f(x)=\displaystyle\sum\dfrac{u_{n}}{n!}x^n}.