Planches d’oral

Réduction d’endo. nilpotent

(Oral Centrale 2018)
Soit {v\in\mathcal{L}(E)}, avec {\dim(E)=3n}.
On suppose {v^{3}=0}, {v^{2}\neq 0} et {\mathrm{rg} (v)=2n}. Montrer que {\text{Ker}(v)\subset \text{Im}(v^2)}.
Montrer qu’il existe une base de {E}{v} a pour matrice {A=\begin{pmatrix}0_{n} & 0_{n} & 0_{n} \\ I_{n} & 0_{n} & 0_{n} \\ 0_{n} & I_{n} & 0_{n}\end{pmatrix}}.

Deux suites de tirages monocolores

(Oral Mines-Ponts 2018)
Une urne contient une proportion {p\in\,]0,1[} de boules blanches et le reste de boules noires.
On effectue des tirages successifs avec remise.
On note {X_1,X_2} les longueurs des deux premières suites monocolores.
Donner la loi de {X_1}, son espérance, sa variance.
Donner la loi du couple {(X_1,X_2)}.
En déduire la loi de {X_2}, son espérance, sa variance.