Intégration sur un intervalle quelconque

Exercices corrigés

Demi-dérivée d’une fonction continue

(Oral X-Cachan)
Si {f \in{\mathcal C}^{0}(\mathbb{R}^{+}}, soit {\mathcal{I}_{1\text{/}2}(f)(x)\!=\!\displaystyle\dfrac{1}{\sqrt\pi}\!\!\int_{0}^{x}\!\!\dfrac{f(t)\,\text{d}t}{\sqrt{x-t}}}.
La dérivée de {\mathcal{I}_{1\text{/}2}(f)}, notée {\mathcal{D}_{1\text{/}2}(f)} est appelée demi-dérivée de {f}. On étudie cette demi-dérivée pour certaines classes de fonctions f.

Suite d’intégrales et série

(Oral Ccp)
1. Intégrabilité des {f_{n}\,\colon x\to \dfrac{x^{2n+1}\ln(x)}{x^{2}-1}} sur {]0,1[}.
On note {I_{n}=\displaystyle\int_{0}^{1}f_{n}(x)\,\text{d}x}. Déterminer {\displaystyle\lim_{n\rightarrow+\infty}I_{n}}.
2. Montrer que {I_{n}=\displaystyle\dfrac{1}{4}\sum\limits_{k=n+1}^{+\infty}\dfrac{1}{k^{2}}}.
En déduire un équivalent de {I_{n}}.