Exercices de 2nde année.
Probabilités, variables aléatoires

Déplacements dans Z2

(Oral Centrale)
Un module, initialement en {(0,0)}, se déplace dans {\mathbb{Z}^2} dans l’une des directions (N,S,E,O) de manière équiprobable. On note {A_{n}=(X_{n},Y_n)} sa position à l’instant {n}, et {Z_{n}} sa distance à l’origine.
Donner {\text{E}(X_{n})}, {\text{V}(X_{n})}. Montrer que {\text{E}(Z_{n})\leq \sqrt{n}}, et calculer {\mathbb{P}(Z_{n}=0)}.