Familles orthogonales

Chebyshev et produit scalaire

(Oral X-Cachan Psi)
On munit {{\mathcal C}^{0}([-1,1],\mathbb{R})} du produit scalaire {\left(f\mid g\right)=\displaystyle\int_{-1}^{1}f(x)g(x)\sqrt{1- x^{2}}\,\text{d}x}On définit les {U_{n}(x) = \dfrac{\sin((n+1)\arccos(x))}{\sin(\arccos(x))}}.
On montre que sont des polynômes deux à deux orthogonaux. On approxime enfin {f\colon x\mapsto \sqrt{1-x^{2}}} par un polynôme de degré {\le 2}.