Calculs matriciels

Matrices par blocs et semblables

(Oral Mines-Ponts)
Soit {N_{1}\in{\mathcal M}_{p_{1}}(\mathbb{K})}, {N_{2}\in{\mathcal M}_{p_{2}}(\mathbb{K})}, nilpotentes.
Soit {U_{1}\in\text{GL}_{q_{1}}(\mathbb{K})}, {U_{2}\in\text{GL}_{q_{2}}(\mathbb{K})}.
On pose {A=\begin{pmatrix}N_{1}&0\\ 0&U_{1}\end{pmatrix}} et {B=\begin{pmatrix}N_{2}&0\\ 0&U_{2}\end{pmatrix}}.
Montrer que {A\sim B\Leftrightarrow\begin{cases}p_{1}=p_{2}\\q_{1}=q_{2}\end{cases}} et {\begin{cases}N_{1}\sim N_{2}\\U_{1}\sim U_{2}\end{cases}}

Matrices bistochastiques, épisode 4

On reprend les définitions et les notations de l’épisode 1.
Pour {A\in\mathcal{M}_{n}(\mathbb{R})}, et pour {\sigma\in\mathcal{S}_{n}}, on note {\sigma(A)=\displaystyle\prod_{j=1}^{n}a_{\sigma(j),j}}.
On dit que {A} est traversable s’il existe {\sigma\in\mathcal{S}_{n}} telle que {\sigma(A)\ne0}.
On montre ici que toute matrice magique de somme {\mu>0} (et en particulier toute matrice bistochastique) est traversable