Cercles orthogonaux. Faisceaux de cercles.

On se place dans \mathbb{R}^2 , muni de sa structure usuelle de plan eulidien.

Pour tout point A et tout réel r > 0, on notera $\mathcal{C}(\Omega, r)$ le cercle de centre A et de rayon r (on ne considérera dans ce problème que des cercles ayant un rayon strictement positif.)

Pour tous points A et B, on notera AB la longueur du segment [A, B].

Première partie : cercles orthogonaux

On dit que deux cercles $\mathcal{C}(\Omega_1, r_1)$ et $\mathcal{C}(\Omega_2, r_2)$ sont orthogonaux si $\Omega_1 \Omega_2 = \sqrt{r_1^2 + r_2^2}$.

- 1. On se donne deux cercles quelconques $C_1 = C(\Omega_1, r_1)$ et $C_2 = C(\Omega_2, r_2)$.
 - Montrer que ces deux cercles sont sécants (c'est-à-dire se coupent en deux points disjoints) si et seulement si on a la double inégalité : $|r_2 r_1| < \Omega_1 \Omega_2 < r_1 + r_2$.

En déduire que deux cercles orthogonaux sont sécants.

- 2. Soit A l'un des deux points d'intersection de deux cercles sécants C_1 et C_2 . Soit D_1 (resp. D_2) la tangente en A au cercle C_1 (resp. C_2).
- Montrer que C_1 et C_2 sont orthogonaux si et seulement si D_1 et D_2 sont orthogonales.
- 3. On se donne un cercle $C_1 = C(\Omega_1, r_1)$, et un point Ω_2 . Montrer que Ω_2 est le centre d'un cercle C_2 orthogonal à $C_1 \Leftrightarrow \Omega_2$ est extérieur à C_1 . Montrer que C_2 est unique. En donner une construction à la règle et au compas.
- 4. Pour tout vecteur v=(a,b,c) de \mathbb{R}^3 , on note $\Phi_v:\mathbb{R}^2\to\mathbb{R}$ l'application définie par :

$$\forall M(x,y) \in \mathbb{R}^2, \ \Phi_v(M) = x^2 + y^2 - 2ax - 2by + c$$

On note $\Gamma(v)$ l'ensemble des points M(x,y) de \mathbb{R}^2 tels que $\Phi_v(M)=0$.

Pour tous
$$\begin{cases} v_1 = (a_1, b_1, c_1) \\ v_2 = (a_2, b_2, c_2) \end{cases}$$
, on pose enfin $\varphi(v_1, v_2) = 2(a_1a_2 + b_1b_2) - c_1 - c_2$.

- (a) Discuter, en fonction du vecteur v, la nature de l'ensemble $\Gamma(v)$. Vérifier notamment que $\Gamma(v)$ est un cercle si et seulement si $\varphi(v,v) > 0$.
- (b) Soient v_1, v_2 dans \mathbb{R}^3 , tels que $\mathcal{C}_1 = \Gamma(v_1)$ et $\mathcal{C}_2 = \Gamma(v_2)$ soient des cercles du plan. Montrer que \mathcal{C}_1 et \mathcal{C}_2 sont orthogonaux si et seulement si $\varphi(v_1, v_2) = 0$.
- 5. (a) Déterminer les cercles orthogonaux simultanément à $\begin{cases} C_1 \text{ d'équation } (x+1)^2 + y^2 = 1\\ C_2 \text{ d'équation } (x-2)^2 + y^2 = 4 \end{cases}$
 - (b) Même question en considérant maintenant les cercles $\begin{cases} C_1 \text{ d'équation } (x-2)^2 + y^2 = 7 \\ C_2 \text{ d'équation } (x+1)^2 + y^2 = 4 \end{cases}$
 - (c) Même question avec $\begin{cases} C_1 \text{ d'équation } (x-2)^2 + y^2 = 1\\ C_2 \text{ d'équation } (x+3)^2 + y^2 = 6 \end{cases}$

Vérifier en outre que les cercles obtenus passent par deux points fixes.

Deuxième partie : axe radical de deux cercles

Soit $\mathcal{C}(\Omega, r)$ un cercle de centre Ω et de rayon r.

Pour tout M de \mathbb{R}^2 , on dit que $\mathcal{P}_{\mathcal{C}}(M) = (\Omega M)^2 - r^2$ est la puissance de M par rapport à \mathcal{C} .

Avec cette définition, il est clair que $\mathcal{P}_{\mathcal{C}}(M) > 0$ (resp. $\mathcal{P}_{\mathcal{C}}(M) = 0$, resp. $\mathcal{P}_{\mathcal{C}}(M) < 0$) si et seulement si M est extérieur (resp. appartient, resp. est intérieur) au cercle \mathcal{C} .

- 1. (a) Soit M un point du plan, et A, B deux points diamétralement opposés sur C. Montrer que $\mathcal{P}_{\mathcal{C}}(M) = (\overrightarrow{MA} \mid \overrightarrow{MB})$.
 - (b) Soit M un point, et D une droite passant par M et rencontrant $\mathcal{C}(\Omega, r)$ en P et Q. Montrer que $\overline{MP} \cdot \overline{MQ} = \mathcal{P}_{\mathcal{C}}(M)$ (on appréciera deux démonstrations.) Qu'obtient-on si la droite D est tangente au cercle \mathcal{C} ?
 - (c) Réciproquement, soit D et Δ deux droites sécantes en un point M. On se donne deux points P,Q sur D et deux points R,S sur Δ . On suppose qu'on a l'égalité $\overline{MP} \cdot \overline{MQ} = \overline{MR} \cdot \overline{MS}$. Montrer que les quatre points P,Q,R,S sont cocycliques.
- 2. Soient $C_1(\Omega_1, r_1)$ et $C_2(\Omega_2, r_2)$ deux cercles non concentriques.

On appelle axe radical de C_1 et C_2 et on note $\Delta(C_1, C_2)$ l'ensemble des points du plan qui ont la même puissance par rapport à ces deux cercles.

- (a) Montrer que $\Delta(C_1, C_2)$ est une droite orthogonale à la droite $(\Omega_1 \Omega_2)$.
- (b) Identifier $\Delta(\mathcal{C}_1, \mathcal{C}_2)$ quand \mathcal{C}_1 et \mathcal{C}_2 sont tangents ou sécants.
- (c) Dans le cas où C_1 et C_2 sont disjoints, donner une construction de la droite $\Delta(C_1, C_2)$ à la règle et au compas (on pourra utiliser deux cercles auxiliaires).

 On fera deux figures (la première quand C_1 et C_2 sont extérieurs l'un à l'autre, et la deuxième quand l'un des deux cercles est intérieur à l'autre.)
- 3. On se donne deux cercles $C_1(\Omega_1, r_1)$ et $C_2(\Omega_2, r_2)$, non concentriques. Montrer qu'un point Ω est le centre d'un cercle orthogonal à la fois à C_1 et C_2 si et seulement si Ω est extérieur à ces deux cercles et appartient à leur axe radical.
- 4. (a) On se donne trois cercles C_1 , C_2 , C_3 dont les centres ne sont pas alignés. Montrer qu'il existe un unique point M du plan ayant même puissance par rapport aux trois cercles. Ce point est appelé centre radical des trois cercles C_1 , C_2 , C_3 .
 - (b) Soient A, B, C trois points non alignés du plan.
 Montrer que l'orthocentre du triangle ABC est aussi le centre radical des trois cercles de diamètres respectifs AB, AC, BC.
 - (c) On se donne trois cercles $C_1(\Omega_1, r_1)$, $C_2(\Omega_2, r_2)$, $C_3(\Omega_3, r_3)$, orthogonaux deux à deux. Montrer que l'axe radical de C_1, C_2, C_3 est l'orthocentre du triangle $\Omega_1\Omega_2\Omega_3$.

Troisième partie : faisceaux de cercles

Pour toute droite \mathcal{D} et tout cercle \mathcal{C} , on note $\mathcal{F}(\mathcal{D},\mathcal{C})$ la réunion de \mathcal{C} et de l'ensemble des cercles \mathcal{C}' tels que $\Delta(\mathcal{C},\mathcal{C}') = \mathcal{D}$; $\mathcal{F}(\mathcal{D},\mathcal{C})$ est appelé faisceau de cercles engendré par \mathcal{D} et \mathcal{C} .

- 1. Dans cette question on décrit le faisceau $\mathcal{F}(\mathcal{D}, \mathcal{C})$ selon la position de la droite \mathcal{D} par rapport au cercle \mathcal{C} . On accompagnera chacun des résultats obtenus d'une figure.
 - (a) On suppose que la droite \mathcal{D} rencontre le cercle \mathcal{C} en deux points distincts A, B. Montrer que $\mathcal{F}(\mathcal{D}, \mathcal{C})$ est l'ensemble des cercles passant par A et B. On dit alors que $\mathcal{F}(\mathcal{D}, \mathcal{C})$ est le faisceau de *points de base* A et B.
 - (b) On suppose que la droite \mathcal{D} est tangente au cercle \mathcal{C} en un point A. Établir que $\mathcal{F}(\mathcal{D},\mathcal{C})$ est l'ensemble des cercles tangents à \mathcal{D} en A.
 - (c) On suppose maintenant que la droite D ne rencontre pas le cercle C. Soit H la projection orthogonale sur D du centre Ω de C. Par le point H (qui est donc extérieur à C), on mène le cercle C orthogonal à C. Montrer que F(D,C) est l'ensemble des cercles orthogonaux à C et centrés sur (ΩH). Si on note J, K les points d'intersection du cercle C et de la droite (ΩH), on dit que F(D,C) est le faisceau de points-limites J, K.
- 2. (a) Soit C_1, C_2, C_3 trois cercles (deux à deux non concentriques) et \mathcal{D} une droite du plan. On suppose que $\Delta(C_1, C_2) = \Delta(C_1, C_3) = \mathcal{D}$. Montrer que $\Delta(C_2, C_3) = \mathcal{D}$.
 - (b) Soient $\mathcal{C}, \mathcal{C}'$ deux cercles non concentriques, et soit \mathcal{D} une droite. Montrer que $\mathcal{C}' \in \mathcal{F}(\mathcal{D}, \mathcal{C}) \Leftrightarrow \mathcal{C} \in \mathcal{F}(\mathcal{D}, \mathcal{C}') \Leftrightarrow \mathcal{F}(\mathcal{D}, \mathcal{C}) = \mathcal{F}(\mathcal{D}, \mathcal{C}')$.
- 3. Soit \mathcal{D} une droite d'équation f(x,y)=0, avec $f(x,y)=\alpha x+\beta y+\gamma$. Soit \mathcal{C} un cercle d'équation $\Phi(x,y)=x^2+y^2-2ax-2by+c=0$ (cf question I.4.)
 - (a) Pour tout point M(x, y), montrer que $\mathcal{P}_{\mathcal{C}}(M) = \Phi(M)$.
 - (b) En déduire que l'équation de tout cercle du faisceau $\mathcal{F}(\mathcal{D}, \mathcal{C})$ s'écrit sous la forme $\Phi(x, y) + \lambda f(x, y) = 0$, avec $\lambda \in \mathbb{R}$.
 - (c) Montrer que tout point qui n'est pas sur \mathcal{D} est sur un unique cercle de $\mathcal{F}(\mathcal{D},\mathcal{C})$.
- 4. On se donne un cercle \mathcal{C} , une droite \mathcal{D} , et on note \mathcal{F} le faisceau $\mathcal{F}(\mathcal{D},\mathcal{C})$.
 - (a) On suppose qu'un cercle \mathcal{C}' est orthogonal à deux cercles distincts \mathcal{C}_1 et \mathcal{C}_2 de \mathcal{F} . Montrer qu'alors \mathcal{C}' est orthogonal à tout cercle du faisceau \mathcal{F} . Indication : on formera l'équation générale d'un cercle de \mathcal{F} et on utilisera I.4.
 - (b) Montrer qu'un cercle \mathcal{C}' est orthogonal à tous les cercles du faisceau \mathcal{F} si et seulement si il est centré sur \mathcal{D} et orthogonal au cercle \mathcal{C} .
- 5. Montrer que les cercles orthogonaux à tous les cercles d'un faisceau \mathcal{F} forment eux-même un faisceau \mathcal{F}' . On dit alors que \mathcal{F} et \mathcal{F}' sont deux faisceaux orthogonaux (ou $conjugu\acute{e}s$.)

 Décrire en particulier le faisceau \mathcal{F}' dans chacun des cas étudiés dans la question III.1
- 6. Soit \mathcal{C} un cercle du faisceau de points-limites A, B.

 Montrer qu'il existe $\lambda > 0$ (avec $\lambda \neq 1$) tel que : $\forall M \in \mathcal{C}$, $\frac{MA}{MB} = \lambda$.

 Qu'obtient-on d'analogue avec un cercle du faisceau de points de base A, B?