Mot clef : Espaces préhilbertiens

Forme linéaire et produit scalaire

On munit {E=\mathbb{R}[X]} du produit scalaire {\left({P}\mid{Q}\right)=\displaystyle\int_{0}^{1}P(t)Q(t)\,\text{d}t}.
Existe-t-il {A\in E} tel que : {\forall\, P\in E,\;P(0)=\,\left({A}\mid{P}\right)}?
Même question avec E=\mathbb{R}_n[X]. Que dire sur A?

Une base orthonormale

Dans {E} préhilbertien réel, soit {(e_k)_{1\le k\le n}} unitaires tels que : {\forall\, x\in E,\;\left\|{x}\right\|^2=\displaystyle\sum_{k=1}^n\left({e_k}\mid{x}\right)^2}
Montrer que {(e_k)_{1\le k\le n}} est une base orthonormée de {E}.

Une base orthonormale de R[X]

Dans {\mathbb{R}[X]}, on pose {\left({A}\mid{B}\right)=\displaystyle\int_{0}^{1}A(t)B(t)\,\text{d}t}, {\;U_{n}(X)=(X^{2}-X)^{n}\;} et {\;P_{n}=U_{n}^{(n)}}.
1. Montrer que {(P_{n})_{n\ge0}} est une famille orthogonale. Calculer \|P_n\|.
2. Former une base orthonormale de {\mathbb{R}_{4}[X]}.

Un produit scalaire?

Soit {a} unitaire dans {E} préhilbertien réel.
Soit \varphi_a\colon E^2\to\mathbb{R} définie par : {\varphi(x,y)=\left({x}\mid{y}\right)+\lambda\left({x}\mid{a}\right)\left({y}\mid{a}\right)}
Pour quels {\lambda\in\mathbb{R}} l’application \varphi_a est-elle un produit scalaire?

Chebyshev et produit scalaire

On munit {{\mathcal C}^{0}([-1,1],\mathbb{R})} de {\left(f\mid g\right)=\displaystyle\int_{-1}^{1}f(x)g(x)\sqrt{1- x^{2}}\,\text{d}x}.
On définit les {U_{n}(x) = \dfrac{\sin((n+1)\arccos(x))}{\sin(\arccos(x))}}.
On montre que sont des polynômes deux à deux orthogonaux.
On approxime {f\colon x\mapsto \sqrt{1-x^{2}}} par un polynôme de degré {\le 2}.

Une approximation quadratique

Pour P,Q dans \mathbb{R}[X], on pose {\left(P\mid Q\right)=\displaystyle\int_{0}^{+\infty}\!P(t)Q(t)\text{e}^{-t}\,\text{d}t}.

  1. Montrer que c’est un produit scalaire. Calculer {\left({X^{i}}\mid{X^{j}}\right)} pour {(i,j)\in\mathbb{N}^{2}.\phantom{\biggl|}}
  2. On définit {f\colon (a_{1},a_{2},\ldots,a_{n})\in\,\mathbb{R}^n\mapsto{\displaystyle\int_{0}^{+\infty}}\Bigl(1-\displaystyle\sum_{k=1}^{n}a_{k}t^{k}\Bigr)^{2}\text{e}^{-t}\,\text{d}t}.
    Montrer que f possède un minimum sur {\mathbb{R}^{n}}, et le calculer.

Un orthogonal non supplémentaire

On munit {E=\mathscr{C}([-1,1],\mathbb{R})} du produit scalaire {\left(f\mid g\right)=\displaystyle\int_{-1}^{1}f(t)g(t)\text{d}t}.
Avec {\begin{cases}F=\{f\in E,\;\forall t\in[-1,0],\;f(t)=0\}\\G=\{g\in E,\;\forall t\in[0,1],\;g(t)=0\}\end{cases}}, montrer que {\begin{cases}F^{\bot\!}=G\\G^{\bot\!}=F\end{cases}}.
Montrer pourtant que F et G ne sont pas supplémentaires dans E.