Produit de Kronecker

Publié le 21/08/17

Pour {A=\begin{pmatrix}a&b\cr c&d\end{pmatrix}\in{\mathcal M}_2(\mathbb{K})} et {M\in{\mathcal M}_n(\mathbb{K})}, soit {A\otimes M=\begin{pmatrix}aM&bM\cr cM&dM\end{pmatrix}}.

  1. Montrer que {(A\otimes M)(B\otimes N)=(AB)\otimes(MN)}.
  2. On suppose que A et M sont inversibles.
    Montrer que {A\otimes M} est inversible et que {(A\otimes M)^{-1}=A^{-1}\otimes M^{-1}}.
  3. Prouver que si {A,M} sont diagonalisables, {A\otimes M} est diagonalisable.

Cliquer ici pour voir (ou cacher) le corrigé